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Understanding the Effects of Tactile Grating Patterns on
Perceived Roughness Over Ultrasonic Friction

Modulation Surfaces
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Objective: Our study aims to investigate the effects of
grating patterns of perceived roughness on surfaces with
ultrasonic friction modulation, and also to examine user
performance of identifying different numbers of grating
patterns.

Background: In designing grating-based tactile textures,
the widths of low- and high-friction zones are a crucial factor for
generating grating patterns that convey roughness sensation.
However, few studies have explored the design space of effi-
cient grating patterns that users can easily distinguish and
identify via roughness perception.

Method: Two experiments were carried out. In the
first experiment, we conducted a magnitude estimation of
perceived roughness for both low- and high-friction zones,
each with widths of 0.13, 0.25, 0.38, 0.5, 1.0, I.5, 2.0,
3.5, and 5.5 mm. In the second experiment, we required
participants to identify 5 pattern groups with 2—6 patterns
respectively.

Results: Perceived roughness fitted a linear trend for low-
or high-friction zones with widths of 0.38 mm or lower.
Perceived roughness followed an inverted U-shaped curve
for low- or high-friction zones with widths greater than
0.5 mm but less than 2.0 mm. The peak points occurred at
the widths of 0.38 mm for both low- and high-friction zones.
The statistical analysis indicates that both low- and high-
friction zones had similar effects on human perception of
surface roughness. In addition, participants could memorize
and identify up to four tactile patterns with identification
accuracy rates higher than 90% and average reaction time
less than 2.2 s.
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Conclusions: The relation between perceived roughness
and varying widths of grating patterns follows linear or inverted
U-shape trends. Participants could efficiently identify 4 or fewer
patterns with high accuracy (>90%) and short reaction time
(<2.25).

Application: Our findings can contribute to tactile in-
terface design such as tactile alphabets and target-approaching
indicators.

Keywords: Texture perception, perceived roughness, mag-
nitude estimation, tactile interaction, roughness identification

INTRODUCTION

Actuator technologies play an important role
in improving the user experience of touchscreen
interactions on mobile devices. Studies have proven
that tactile feedback could alleviate interactive issues
such as the “fat finger” problem and no physical
sensation of widgets for touchscreen interactions
(Hoggan et al., 2008; Luk et al., 2006). Recent
studies have been focused on the use of tactile
feedback in application scenarios such as conveying
tactile alphabets (Liu & Dohler, 2020), text typing
(Hoggan et al., 2008), target acquisition (Henderson
et al., 2019), drag & drop operation (Gordon &
Zhai, 2019), accessibility (Bateman et al., 2018),
eyes-free interaction (Chen et al., 2014), and noti-
fication awareness (Saket et al., 2013). Therefore,
tactile feedback has become a significant compo-
nent on touchscreen mobile devices.

To enrich the diversity of tactile feedback on
touchscreen mobile devices, researchers have
investigated how to develop techniques that can
render tactile information on touchscreens. Elec-
trostatic and ultrasonic actuation are two emerging
techniques that provide dynamic friction on the
touchscreen (Basdogan et al., 2020). For the
electrostatic actuation technique, an electrostatic
force increases the friction between finger and
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surface by electroadhesion (Bau et al., 2010). For
the ultrasonic actuation technique, piezoelectric
motors are employed to generate ultrasonic fre-
quencies of vibrations on touch surfaces, so that
a reduction in friction between the sliding finger
and surface can be created via the effect of squeeze
film (Casiez et al., 2011). The advantage of
electrostatic and ultrasonic actuation techniques is
that they could provide sophisticated feedback to
the fingertip rather than the entire hand as provided
by mechanical actuators. Such fine-grained tactile
feedback could generate surface roughness to
simulate various textures of real objects on
touchscreens (Vardar et al., 2017).

Previous studies have explored the perceptual
mechanism of how people perceive the rough-
ness of generated surface textures. As for per-
ceived roughness over real textures, Katz (Katz,
1989) proposed the duplex theory of tactile
texture perception to explain the perceptual
mechanism of finely and coarsely textured
surfaces. For fine textures with a spatial period
of less than 0.2 mm, texture discrimination only
takes place in the movement condition, and
Pacinian corpuscle afferents mediate the per-
ception. For coarse textures within a spatial
period larger than 0.2 mm, roughness features
are carried from the skin to the brain mostly by
slowly adapting afferents system (Blake et al.,
1997; Connor et al., 1990). The magnitude es-
timation data indicated that the perceived
roughness of coarse textures was generally
a power function of spatial period, and the
perceived roughness tended to follow an in-
verted U-shape trend with the increase of groove
width (Hollins & Bensmaa, 2007; Hollins &
Risner, 2000; Lederman, 1974; Taylor &
Lederman, 1975).

Compared to the many studies on real tex-
tures, relatively fewer studies have been done on
perceived roughness over virtual textures. Pre-
vious studies have investigated texture dis-
crimination, magnitude  estimation and
identification to understand the perceptual
mechanism over virtual textures. For example,
Biet et al. (M. Biet et al., 2008) explored grating
design using the spatial periods (SPs) and Weber
fraction to measure the discrimination thresh-
olds. In their study, the participants distin-
guished a difference of 8.96% in the spatial

periods (SPs) of the two patterns presented to
them. Saleem et al. (2020) studied step changes
in frictional gratings on an ultrasonic friction
surface. Their results showed a step fall in
friction followed by a step rise in friction could
be identified more easily than the reverse order.
They also reported that a relative difference of
14% in spatial period was required to discrim-
inate two grating patterns. Klatzky et al. (2019)
investigated the detection and identification of
frictional patterns in coarse fingerprint, fine
fingerprint, and star patterns rendered by elec-
trostatic actuation. Their results showed that
participants could identify the patterns in around
1 second with a miss rate of 3.9% and a false
alarm rate of 4.1% but with a very low identi-
fication accuracy (36.1%). The low accuracy
may be because of the mismatching between
scaled stimulus images and frictional patterns,
difficulty in mapping edge distributions on the
fingertip to a visual display, and noise caused by
both finger moving and friction rendering of the
haptic device. Although these studies have in-
vestigated the perception of virtual texture
features, they provide limited information on
perceived roughness in terms of perceptual
mechanisms. An exception is a study by Vardar
et al. (Vardar et al., 2017), which looked into
roughness perception of virtual textures using
a magnitude estimation method. They found that
when groove width varied from 0.125-7.5 mm,
the roughness perception followed an inverted
U-shape trend with respect to groove width.
However, they only varied ridge width but kept
groove width constant. It is unclear whether and
how low- and high-friction zones with different
widths affect human perception of perceived
roughness. As shown in Figure 1, the virtual
square gratings are composed of high-friction
zones and low-friction zones. With varying
widths of low- and high-friction zones, various
gratings can be obtained to convey different
sensations to sliding finger on friction surfaces.
In addition, Vardar et al. (2017) investigated
perceived roughness using the device with
electrostatic actuation, but did not consider
devices with ultrasonic actuation. According to
Gueorguiev et al. (2019), ultrasonic and elec-
trostatic devices may differ in the sharpness of
the virtual gratings’ edges because of their
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Figure 1. The grating pattern of texture with low-/high-friction zones (black: high-
friction zones; white: low-friction zones) for conveying roughness while a finger moves
across the friction zones in the left or right direction.

disparity in the time needed for the ultrasonic
wave to establish itself. The sharpness of the
edges could impact roughness perception, which
in turn may influence the perceptual mechanism.
Therefore, the results of Vardar et al. (2017) may
not be directly generalized to roughness per-
ception over virtual textures generated by ul-
trasonic haptic devices.

We need to address the following questions to
achieve a better understanding of perceived
roughness over virtual textures with ultrasonic
haptic devices. How can we select a group of
grating patterns that are perceived differently
from each other? And what is the maximum
number of tactile patterns rendered by ultrasonic
friction surfaces that could be easily distin-
guished and identified, particularly in the ab-
sence of visual clues? What is the user
performance of identifying grating patterns in
terms of accuracy and reaction time? These
questions are crucial in designing tactile-based
interfaces. We must understand user perfor-
mance in perceiving the roughness of tactile
patterns over ultrasonic friction surfaces. On the
basis of the understanding of human capabilities,
we then can design efficient tactile patterns and
develop new tactile applications.

In this study, we conducted two experiments
with an ultrasonic haptic device to address the
above questions. In experiment 1, we investigated
the effects of widths of low- and high-friction
zones on perceived roughness. Magnitude esti-
mation of perceived roughness was conducted for
both low- and high-friction zones, each with the
widths of 0.13, 0.25, 0.38, 0.5, 1.0, 1.5, 2.0, 3.5,
and 5.5 mm. In experiment 2, we examined
participants’  ability of grating  pattern

identification. Five pattern groups with different
numbers of patterns (i.e., 2—6) were used for the
experiment. Results showed that both low- and
high-friction zones in grating pattern design
played similar effects on human perception of
grating pattern roughness. Besides, participants
could identify four or fewer patterns with an
accuracy rate higher than 90% and an average
reaction time of less than 2.2 s.

Our work offers the following contributions:

1. A systematical investigation into the human
ability to perceive grating pattern roughness over
ultrasonic frictional surfaces.

2. Exploring efficient designs of grating patterns to
render surface roughness.

3. Performance evaluation on user capability of
perceiving and identifying grating patterns based
on roughness.

4. Design implications for tactile interfaces by
considering the human ability to identify grating
patterns.

EXPERIMENT 1:
ROUGHNESS PERCEPTION

The goal of this experiment was to investigate
how users perceive roughness with the grating
design which is based on the combinations of
low-friction and high-friction zones. The fol-
lowing questions were the main focuses of this
experiment.

Q1 What is the relation between perceived
roughness and varying widths of low-friction
and high-friction zones? Existing studies have
investigated the human perception of roughness
on virtual textures (Unger et al., 2011; Vardar
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et al,, 2017). However, they only controlled
a single parameter, either low-friction or high-
friction. We aimed to evaluate the effects of the
combination of both low-friction and high-
friction zones on perceived roughness. In-
tuitively, perceived roughness would vary across
different combinations of low-friction and high-
friction zones. We would like to find out the
perceived roughness trends for varying widths
of low-friction and high-friction zones.

Q2 Would low-friction and high-friction zones
equally contribute to perceived roughness? If not,
would low-friction zones have a greater impact
on perceived roughness than high-friction zones,
or vice versa? Answering these questions could
deepen our understanding of roughness percep-
tion and also benefit grating pattern design.

Apparatus

We used a TPad phone in the experiment,
which was introduced through an open-source
project (Figure 2). The device was assembled
on the basis of an Android smartphone. The device
provided dynamic frictions on the touchscreen by
using air squeeze film damping (M Biet et al.,
2007) which could generate ultrasonic vibration to
adjust the friction of the touchscreen. When vi-
bration is not actuated, the surface friction is the
same as a glassy surface; otherwise, the surface
friction is reduced by the squeeze film effect. The
amount of decrement can be controlled by an
alternating voltage that is applied to the vibration
actuator embedded in the TPad. This technology
has a great potential for mobile applications be-
cause it provides unique roughness sensations to
fingertip at a low cost and with high accessibility
(Bimholtz et al., 2015; Hightower et al., 2019;
Mullenbach et al., 2014; Mullenbach et al., 2013).

The device had a 10.4 cm % 5.85 cm 4.7 inch
touchscreen, a display resolution of 720 x 1280
pixels. The dimensions of the device were 16.5 cm
in length, 7.0 cm in width, and 1.0 cm in height.
The weight was approximately 160 g. The default
working parameter of the TPad in the experiment
was a piezoelectric operation frequency of 40 kHz
to produce the strongest feedback.

A TPad application was developed in Java for
the experiment, as shown in Figure 2. We asked
participants to maintain finger movement speed

Figure 2. The TPad phone and the experimental in-

terface. The red rectangle moves left and right in the
horizontal direction at a constant velocity of 50 mm/s to
guide the participant’s finger velocity. The participant
can perceive dynamic friction on the gray area of the
screen.

at approximately 50 mm/s during the experiment
by following a target moving left and right on
the screen. We selected this speed based on
(Vardar et al., 2017).

Participants

A total of 12 students (6 male, 6 female) in the
local university were recruited for the experi-
ment. The mean age of the participants was 20.9
years (SD = 1.2). All participants had at least
four years of experience in using touchscreen
mobile devices, but none of them had experience
in using a tactile device such as the TPad. After
the experiment, each participant was paid 50
Chinese yuan for the participation.

Grating Pattern Design

A grating pattern consists of two-zone types:
low-friction zone and high-friction zone. The
width of the low-friction zone and the width of
the high-friction zone are represented as LW and
HW respectively, as shown in Figure 1. Different
(LW, HW) combinations produce various grating
patterns, accordingly may provide users differ-
ent levels of perceived roughness.
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According to (Vardar et al., 2017), we se-
lected nine width values for LW and HW: 0.13,
0.25,0.38,0.5,1.0,1.5,2.0, 3.5, and 5.5 mm. Note
that, we excluded the largest width (7.5 mm) used
in (Vardar et al., 2017). Such a width resulted in
a very low magnitude of perceived roughness in
our pilot study, as participants could hardly dis-
criminate the difference of patterns that contained
this value as either LW or HW. We then assigned
the nine width values to LW and HW, respectively,
resulting in 81 (9 x 9) grating patterns.

Experiment Design

The experiment was a within-subject repeated
measures design. The independent variable was
the grating patterns with 81 conditions.

The dependent variable was the magnitude of
perceived roughness. We adopted abstract
magnitude estimation (AME) (Gescheider &
Hughson, 1991) to measure the relation be-
tween grating patterns and perceived roughness.
Many well-established psychophysical research
methods have been proposed to understand the
correlation between changes in physical stimuli
and associated sensation (Jones & Tan, 2013;
Lederman, 1974). Of those, we chose to use AME
which requires users to estimate the strength of
stimuli by assigning numbers to them. Because
this method does not set a predefined maximum
and minimum, users are capable of making un-
biased numerical judgments of psychological
magnitude as they are permitted to use their own
natural units (Gescheider & Hughson, 1991).
AME is suitable for an experimental design in
which the presence of the target experience is
unknown. The result of AME will allow us to
create response curves that show how a change in
LW or HW influences perceived roughness.

Procedure

The experimental procedure had three steps:

1) The experimenter described grating pattern
roughness to the participants by showing different
pairs of (LW, HW) patterns on the TPad. The ex-
perimenter asked participants to sense these pat-
terns and understand the difference between grating
pattern roughness and motor vibration by the TPad.

2) The experimenter showed participants a (LW, HW)
= (a, b) pattern (a and b represent one of the nine
values of LW and HW used in the experiment) and
asked them to feel it and give a magnitude value to
quantify the perceived roughness. The magnitude
value was expected to fall between 1 and 100.
However, according to the AME method, the
experimenter did not ask the participants to restrict
the reported magnitude values to any limit, and
values lower than 1 or greater than 100 were also
acceptable.

3) Participants were asked to sit in a chair to perform
the task with the index finger of the dominant hand
while holding the device with the non-dominant
hand. They could perceive each pattern as many
times as they wanted by drawing either left or right
flick gestures with the index finger of their
dominant hand. The 81 patterns with two repe-
titions were randomly shuffled. In each perception
task, participants perceived the pattern and re-
ported their estimated magnitude of roughness to
the experimenter for recording. The participants
were instructed to wash their hands with soap to
remove residual oils on their skin, and wore noise-
canceling headphones to avoid the disturbance of
audio clues on their perception. Participants rested
every 30 trials during the experiment.

The experiment consisted of 81 patterns x 2
repetitions X 12 participants = 1944,

The experiment lasted for an average of 60
minutes for one participant.

RESULTS

As mentioned earlier in this section, we aimed
to understand the relationship between perceived
roughness and varying LW and HW. To this end,
we first plotted the data AME to check varying
trends of perceived roughness with regard to LW
and HW changes. Afterward, we statistically
analyzed the effects of LW and HW on perceived
roughness. And finally, we proposed a method of
how to select grating patterns that are most dis-
tinctive from each other.

Plot of the Perceived Roughness

The collected data included 1944 magnitudes
of perceived roughness on 81 patterns. Most of
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the magnitude data (99.8%) were fall within 1—
100. Ten (0.2%) magnitudes exceeded 100 (the
maximum was 110), but no magnitude was
lower than 1. For data plot and statistical
analysis, the roughness magnitudes were nor-
malized using the following formula according
to (Vardar et al., 2017).

P (1)

max — min

Where 7 represents the magnitude of perceived
roughness, min and max represent the minimum
and maximum of individual perceived rough-
ness magnitudes, respectively, and '’ represents
the normalized value.

Our analysis was conducted based on the plot
analysis method in previous studies (Isleyen
et al, 2020; Vardar et al, 2017). Such
amethod has been used to investigate perception
mechanisms. It was originally used in analyzing
magnitude estimation results of perceived
roughness over real grooved surfaces
(Lederman, 1974). The plot analysis is useful to
obtain varying trends with respect to gratings’
spatial period. And the linear or quadratic trends
can quantify the relationship between widths of
friction zones and perceived roughness.

The data were then categorized into nine
groups and plotted against nine conditions to
observe their trends (Figure 3a—i). For example,
Figure 3a shows two lines. The solid one il-
lustrates that the low-friction zone keeps con-
stant at 0.13 mm width and the high-friction
zone varies from 0.13 mm to 5.5 mm. The dotted
line shows the high-friction zone keeps constant
at 0.13 mm width and the low-friction zone
varies from 0.13 mm to 5.5 mm. The cases for
0.25 mm-5.5 mm are shown in Figure 3b-i
respectively.

The Shapiro—Wilk test showed that magni-
tude data were not all normally distributed, so
the Friedman test was used to analyze the results
of perceived roughness. The Wilcoxon signed-
rank test was used for post hoc analysis.

On the whole, the magnitude of perceived
roughness generally declined with increasing
either width of low-friction zone or high-friction
zone value. The perceived roughness appeared
linear or quadratic trends with varying widths of
LWand HW in different conditions. From Figure

3a and b, it can be seen that there were good
linear fits on perceived roughness for both LW
and HW constant cases (H(8) = 93.81, p <.001,
R? = 0.9758 and H(8) = 93.94, p < .001, R? =
0.9845 for solid and dotted lines, respectively, in
Figure 3a, and H(8) = 92.76, p < .001, R? =
0.9441 and H(8) =91.84, p < .001, R* = 0.9489
for solid and dotted lines, respectively, in Figure
3b). Post hoc analysis revealed that for each line,
almost all of the widths were significantly dif-
ferent from each other (all p < 0.05) when the
varying width larger than 0.25 mm except the
width of 0.5 versus 1.0 mm in Figure 3b dotted
line (p = 0.167).

For the 0.38 mm condition shown in Figure
3c, there was still good linear fit for LW and HW
conditions (H(8) = 86.36, p < .001, R* = 0.857
and H(8) = 82.95, p < .001, R* = 0.8776, re-
spectively), as shown in solid and dotted lines.
The post hoc analysis showed that all varying
widths greater than 1.0 mm were significantly
different from each other (all p < 0.05).

The perceived roughness followed an in-
verted U-shape trend when the varying width
reached 0.5 mm but less than 2.0 mm as shown
in Figure 3d—g. All the solid and dotted lines
show good quadratic fits (H(8) =86.76, p <.001,
R? = 0.974 and H(8) = 86.13, p < .001, R* =
0.979 in Figure 3d; H(8) =80.72, p < .001, R? =
0.969 and H(8) = 75.44, p < .001, R* = 0.969 in
Figure 3e; H(8) = 71.07, p < .001, R* = 0.937
and H(8) = 63.44, p < .001, R* = 0.9613 in
Figure 3f; and H(8) = 60.87, p < .001, R? =
0.8813 and H(8) = 64.34, p < .001, R? = 0.9062
in Figure 3g). On the inverted U-shape curves,
all peak points occurred at the widths of
0.38 mm. The post hoc analysis revealed that all
the 0.38 mm peak points were significantly
different from their corresponding 0.13 mm and
5.5 mm cases (all p < 0.05). These statistical
results confirmed the nature of the inverted U-
shape trend of perceived roughness.

Figure 3h and i also show an inverted U-
shape trend for the varying width on 3.5 mm and
5.5 mm conditions; however, the trends were flat
(H(8)=38.33, p<.001, R*=0.9055 and H(8) =
51.96, p <.001, R?=0.7924 for solid and dotted
lines respectively in Figure 3h, and H(8) =
42.36, p <.001, R* = 0.7803 and H(8) = 14.41,
p=0.04, R? = 0.6932 for solid and dotted lines
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Figure 3. Means of magnitudes of perceived roughness with different widths of low-/high-friction
zones in nine groups. In each group, there are nine varying conditions. Perceived roughness (PR)
with the width of friction zones (W) are fitted using linear or quadratic regressions. The error bars

represent the standard error of the means.

respectively in Figure 31)). The peak points were
at 2.0 mm width. The statistical analysis con-
firmed that the perceived roughness on the peak
point was significantly different from 0.13 mm
and 5.5 mm (all p < 0.05).

In summary, the above analysis indicates
that LW and HW conditions in each group
generally showed a similar trend with com-
parable magnitude values of perceived
roughness.

Low- and High-friction Zones Effects

To obtain a concrete statistical result of the
effects of low- and high-friction zones on per-
ceived roughness, we further analyzed all the (Z,
H) = (a, b) versus (L, H) = (b, a) pairs using
Wilcoxon signed-rank test. We excluded 9
patterns with the same LW and HW values from

the 81 patterns, and grouped the rest patterns
into 36 pairs for comparisons. The test was set at
a significance level of a = 0.05. The results are
shown in Table 1.

According to the analysis results, no signif-
icant difference was found for each pair (all p >
0.05). Therefore, based on the plot analysis in
Figure 3 and the analysis of pair comparisons
in Table 1, it is reasonable to conclude that
perceived pattern roughness would not be sig-
nificantly different by swapping low- and high-
friction zones.

Pattern Selection Method. The above anal-
ysis shows that (LW, HW) = (a, b) could
achieve similar perceived roughness as (LW,
HW) = (b, a). Therefore, both (LW, HW) = (a,
b) and (LW, HW) = (b, a) patterns can be
merged into a single pattern using the fol-
lowing formula.



EE B - Human Factors

(1o=d ¢geo=d g9o=d /10=d |zo=d g/0=d oz0=d <z10=d oL0=d 6,0=d ¢g0o=d y90=d
8€'Ll— =2 860—=2 9y 0—=2 Q€L—=2 92— =2 §Z0— =2 §Zl—=2 [S|—=2Z €9l-=2 [Z0—=2 Zl'l—-=2Z [y0—=2
(s€ (0z 0z (5L (s°1 (51 (0L (0L (01 (oL (s0 (90
‘G'G)'SA 'G'G)SA ‘G'E)SA ‘G'G)SA ‘G'E)SA ‘0°Z) SA ‘GG) SA ‘G'E)'SA ‘0°Z) 'SA ‘G°L) SA ‘G'G) 'SA ‘G'E) "SA
(s's's'e)  (s's'0'2) (€02  (§'5's’L)  (s€'s'L)  (0z's'L)  (§'s'0oL)  (s€0L)  (0z'o'L)  (s'L'o'L)  (§'s's'0)  (S°€'s°0)
(L0=d gyo=d 1g0=d zI10o=d ¢gL0=d o080=d gyro=d 90=d $/0=d peo=d ggL=d ¢gs60=4d
8€'L— =2 1[0—=2 20l—=Z $Sl—=Z Epl—=2Z 90— =2 [0 =Z E€p0—=2Z ¥£€0— =2 G60— =2 €£L—=2 900— =2
(s'0 (s'0 (s'0 (8€'0 (80 (80 (s€'0 (8€'0 (s€'0 (sz'0 (sz'0 (sz0
‘02)'SA 'STL)SA ‘O°L)SA ‘G'G) SA ‘G'E)SA ‘0°Z) SA ‘GTL) SR QL) 'SA ‘§°0) SA ‘G'G) SA ‘GE) SA ‘D7) “SA
(0z's’0)  (s'1's'0)  (0°L's'0) (s's'8€'0) (S'€'8c’0) (0°z'8c0) (S°L'8€'0) (0°L'8€'0) (S0'8€°0) (§°s'sz'0) (s'€'sz'0) (0°2'sz0)
gg0=d $60=d 1g0=d sr0=d oL0=d ¢c0o=d 180=d gL0=d g8go=d 4c0=d 1g0=d 9p0=d
GL'0— =2 800— =2 €0l—=2 20— =2 G9l—=2Z [60- =2 ¥20— =2 $E€l—=2Z 90— =2 [80— =2 20— =2 ¥/[0-=2

(sz'0 (sz0 (sz0 (sz'0 (€L0 (€10 (€10 (€10 (€10 (€Lo0 (€10 (€L0
‘G'L)'SA '0°L)'SA ‘G'0) 'SA '8€°0) 'SA 'G'G) 'SA ‘G'€)'SA ‘0°Z)'SA 'G'L)SA ‘O°L)'SA ‘G'0) 'SA ‘8E€'0) 'SA 'GZ’0) 'SA
(s'1'sz'0) (0°L'sz'0) (S'0'sZ'0) (8€'0'sZ2’0) (S'S'€L'0) (S'e€'€L'0) (02'sL'0) (S'L'€L0) (0°L'€EL'0) (S°0'sL'0) (8€°0'€L'0) (SZ'0'EL'0)

‘suostiedwod asimiied usened (e ‘q) = (H “7) snsieA (g ‘e) = (H ‘7) 4o siied 9¢ syl UO S) NS 1581 Suel-paubis UOXOD|IA YL “| d|qel



XXX 9
Table 2. Means of roughness magnitudes of the 45 patterns in descending order.
Patterns Roughness Patterns Roughness Patterns Roughness
(0.13,0.13) 0.984 (0.13,1.0) 0.555 (0.5,3.5) 0.119
(0.13,0.25) 0.964 (0.25,1.5) 0.533 (1.5,3.5) 0.117
(0.25,0.25) 0.951 (0.5,1.5) 0.506 (0.38,3.5) 0.089
(0.25,0.38) 0.850 (1.0,1.5) 0.484 (3.5,3.5) 0.079
(0.38,0.38) 0.827 (1.5,1.5) 0.466 (0.25,3.5) 0.071
(0.13,0.38) 0.819 (0.38,2.0) 0.408 (2.0,5.5) 0.067
(0.38,0.5) 0.787 (0.13,1.5) 0.388 (1.0,5.5) 0.056
(0.25,0.5) 0.759 (0.25,2.0) 0.381 (1.5,5.5) 0.051
(0.5,0.5) 0.721 (0.5,2.0) 0.359 (5.5,5.5) 0.041
(0.13,0.5) 0.684 (1.5,2.0) 0.349 (3.5,5.5) 0.040
(0.38,1.0) 0.675 (1.0,2.0) 0.339 (0.5,5.5) 0.040
(0.25,1.0) 0.669 (2.0,2.0) 0.286 (0.13,3.5) 0.038
(0.5,1.0) 0.602 (0.13,2.0) 0.198 (0.38,5.5) 0.038
(1.0,1.0) 0.592 (2.0,3.5) 0.138 (0.25,5.5) 0.030
(0.38,1.5) 0.558 (1.0,3.5) 0.119 (0.13,5.5) 0.019

(L H) = { (f,’ J;)),’ y®

where a and b represent one of the nine width
values.

Consequently, the 81 experimental grating
patterns were merged into 45 distinct patterns
using formula (2), that is, the 36 pairs in Table 1
(select one pattern from a pair) and the 9 patterns
with equal LWand HW values. Table 2 shows the
merged 45 patterns in descending order of
roughness magnitudes.

User interface design based on tactile textures
usually needs to rely on multiple levels of
roughness to accommodate task needs. It is thus
worth finding a way to select grating patterns
with perceived roughness varying to the greatest
extent, so that users could distinguish them with
minimal effort. Therefore, we proposed the
following method to select candidate patterns.

Rmax - Rmin
P 3)

n—1
Ri=Rum—r>x(i—1),(1 <i<n) @

Where R,,.. and R,,;, represent the maximum
and minimum of roughness magnitude values
respectively, n represents the number of patterns
to be selected, r represents the step value for the

next calculation. In formula (4), i represents the
index of roughness magnitude to be selected, and
R; represents the selected roughness magnitude.

For example, we can adopt the following
steps to select 6 grating patterns with perceived
roughness varying to the greatest extent. Ac-
cording to Table 2, R, is 0.984 and R,,;, is
0.019, n is 6 for formula (3) and (4). Hence, r is
equal to 0.193, R;, R,, R3, R4, Rs, and Ry are
calculated to be 0.984, 0.791, 0.598, 0.405,
0.212, and 0.019, respectively. The roughness
magnitude of the selected patterns should be
closed to the R; values (i = 1, 2, 3, 4, 5, 0).
According to Table 2, the corresponding patterns
are set as (0.13, 0.13), (0.38, 0.5), (0.5, 1.0),
(0.38, 2.0), (0.13, 2.0), (0.13, 5.5).

DISCUSSION

In this section, we discuss the experimental
results against the two questions raised at the
beginning of the experiment.

The first question aimed to explore the re-
lationship between perceived roughness and
varying widths of low-friction and high-friction
zones. The data analysis reveals two trends of
perceived roughness with varying widths of
low-friction and high-friction zones. First, when
LW or HW was set as constant values of 0.38 mm
or lower, the perceived roughness generally
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Identification

m 1/25

Figure 4. (a) Experimental environment and (b) interface for pattern identification tasks.

In (b), the “Mode” button on the top of the interface was used to select a pattern group for
the experiment. Clicking the “Start” button starts an identification trial, along with the
text of the “Start” button changing to “Finish”. Clicking the “Finish” button ends this
identification trial and the text of the button changed to “Start” to indicate that participants

can start the subsequent trial.

declined in a linear relationship with the increase
of the width of the friction zone. Second, the
perceived roughness followed an inverted U-
shape trend when the constant factor of either
LW or HW was larger than 0.5 mm but smaller
than 2.0 mm. The inverted U-shape feature was
in line with (Vardar et al., 2017); however, the
peak point was shifted from 1.5 mm in (Vardar
et al.,, 2017) to 0.38 mm in the present study.
Such a difference may be due to different de-
vices used in our study and the previous study.

In the second question, we aimed to look into
if low-friction and high-friction zones would
equally contribute to perceived roughness. The
experimental results showed that low-friction
and high-friction zones had similar effects on
the perceived roughness. Such a conclusion was
deduced from the result that swapping low- and
high-friction zones had no significant effects on
perceived roughness. In other words, when
designing patterns such as (LW, HW) = (a, b), we
can use the (LW, HW) = (b, a) pattern instead
because both patterns could produce in-
distinguishable sensations for participants. To
our knowledge, this is the first empirical

evidence for understanding the simultaneous
effects of low-friction and high-friction zones on
perceived roughness.

EXPERIMENT 2: GRATING
PATTERN IDENTIFICATION

With the pattern selection method proposed
in Experiment 1, we can select a set of grating
patterns with perceived roughness (pattern group)
that would be most distinctive from each other. For
example, as presented in Identification Strategies,
the pattern group with 6 distinct patterns is (0.13,
0.13), (0.38, 0.5), (0.5, 1.0), (0.38, 2.0), (0.13, 2.0)
and (0.13, 5.5). Following the identical method,
we can obtain pattern groups with 2, 3,4, 5, and 6
patterns. The goal of this experiment was to ex-
amine user performance in identifying the patterns
in a given pattern group. We would like to address
the following two questions.

Q1 What is the maximum number of patterns
that participants could identify with high ac-
curacy and short time? A larger sized pattern
group could provide a richer design vocabulary;
however, identification performance is likely to
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Table 3. Selected patterns for the experiment. From the top to bottom, each row presents a pattern group
with 2, 3, 4, 5, and 6 patterns, respectively. P1-Pé represent indexes of patterns in a pattern group. The
numbers in the bracket above each image represent the magnitude of low- and high-friction zones,

respectively.

Pattern

group Selected patterns

2 patterns P1(0.13, 0.13) P2 (0.13,5.5)

3 patterns P1(0.13, 0.13) P2 (0.5, 1.5) P3(0.13,5.5)

4 patterns P1(0.13, 0.13) P2 (0.25, 1.0) P3 (1.0, 2.0) P4 (0.13,5.5)

5 patterns P1(0.13, 0.13) P2 (0.25, 0.5) P3 (0.5, 1.5) P4(2.0,2.0) P5(0.13,5.5)

6 patterns P1(0.13, 0.13) P2(0.38, 0.5) P3 (0.5, 1.0) P4 (0.38, 2.0) P5(0.13, 2.0) P6 (0.13, 5.5)

decline. Thus, it is worthy of finding out pattern
groups with a large number of grating patterns
while supporting fast and accurate identification
performance.

Q2 How would participants behave when
identifying patterns in pattern groups with dif-
ferent pattern numbers? Participants may adopt
varying strategies to achieve fast and accurate
identification performance. It is of interest to look
into personalized strategies so as to gain insights
into user behavior of identifying grating patterns.

Apparatus

The TPad phone in Experiment 1 was used in
this experiment. The experiment application was
developed in Java. The experimental environment
and application interface are shown in Figure 4.

Participants

Twelve participants (6 male, 6 female) in the
local university were recruited for the experi-
ment. None of them participated in Experiment 1.
The mean age of the participants was 20.8 years
(SD = 0.75). All participants reported that they
had at least four years of experience using
touchscreen mobile devices, but none of them has
used a tactile interface before, for example, the
TPad. After the experiment, each of the partic-
ipants was paid 50 Chinese yuan for their time.

Pattern Selection

Based on the pattern selection method in
Experiment 1, we selected pattern groups with

2,3,4,5, and 6 patterns for the experiment. The
patterns are shown in Table 3.

We did not use pattern groups with more than
6 patterns because most of the participants had
difficulty memorizing and identifying more than
6 patterns. Our pilot study showed that partic-
ipants achieved an average accuracy rate lower
than 60% when identifying 7 patterns.

Experiment Design

The experiment was a within-subject re-
peated measures design. The independent var-
iables and dependent variables are as follows.

Independent variables: pattern groups with 2,
3,4, 5, and 6 patterns, as shown in Table 3.

Dependent variables: identification accuracy
(AC), reaction time (RT), and finger velocity.
Identification accuracy was the ratio of the count
of correct identified patterns to the number of
trials. Reaction time was measured as the period
from clicking the “Start” button to start a task
until clicking the “Finish” button to complete the
task. Finger velocity was the mean velocity of
finger scanning on the touchscreen to perceive
a pattern in a trial.

Tasks and Procedure

The experimental tasks were divided into five
sessions. From the first to the fifth session, the
participants needed to memorize and identify
pattern groups with 2, 3, 4, 5, and 6 patterns
respectively. Because participants were the first
time to experience friction surface, the order of
presentation of the five sessions was from easy
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Table 4. Pattern-response normalized confusion matrices. (a)-(e) represent pattern groups with 2-6

patterns. P1-Pé are patterns indicated in Table 3.

Identified
2 patterns P1 P2
Actual P1 1.00 0.00
P2 0.00 1.00
Identified
3 patterns P1 P2 P3
Actual P1 1.00 0.00 0.00
P2 0.00 0.98 0.02
P3 0.00 0.08 0.92
Identified
4 patterns P1 P2 P3 P4
Actual P1 0.97 0.03 0.00 0.00
P2 0.03 0.92 0.05 0.00
P3 0.00 0.20 0.80 0.00
P4 0.00 0.00 0.08 0.92
Identified
5 patterns P1 P2 P3 P4 PS5
Actual P1 1.00 0.00 0.00 0.00 0.00
P2 0.07 0.82 0.08 0.03 0.00
P3 0.00 0.20 0.75 0.05 0.05
P4 0.00 0.00 0.22 0.73 0.05
P5 0.00 0.00 0.00 0.18 0.82
Identified
6 patterns P1 P2 P3 P4 P5 P6
Actual P1 0.87 0.13 0.00 0.00 0.00 0.00
P2 0.10 0.73 0.17 0.00 0.00 0.00
P3 0.00 0.15 0.60 0.25 0.00 0.00
P4 0.00 0.03 0.37 0.50 0.08 0.02
P5 0.00 0.00 0.00 0.15 0.70 0.15
P6 0.00 0.00 0.00 0.00 0.22 0.78

to hard, so as to allow for participants to ease
gradually into the more complex patterns. In this
way, we could avoid frustrating participants at the
starting phase with difficult identification tasks, and
make participants have the confidence to move on to
the next task. Each session consisted of a practice
phrase and a test phase. In the practice phase,

the participants needed to experience the
patterns of pattern groups in the session and
practice identification tasks. The participants
were instructed to wash their hands with soap
to remove residual oils on the skin, and wore
noise-canceling headphones to avoid the dis-
turbance of audio clues on their answers.
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Participants were asked to sit in a chair and
perform the task with the index finger of the
dominant hand while holding the device with the
non-dominant hand. Once they were ready for
the test, they clicked the “Start” button to start
a trial and perceived the pattern on the TPad
touchscreen (Figure 4b). When participants
could identify the pattern, they needed to click
the “Finish” button to complete the trial, and
then reported their perceived pattern to the ex-
periment moderator for record keeping. Partic-
ipants were instructed to perform the task as
quickly and accurately as possible. In a session,
each pattern was repeated five times and all of
the patterns were randomly shuffled during the
session.

The experiment had (excluding practice tri-
als): (2 patterns + 3 patterns + 4 patterns + 5
patterns + 6 patterns) x 5 repetitions x 12 par-
ticipants = 1200 trials.

After the tasks, the experiment moderator
discussed with the participants to collect their
subjective feedback. The entire experiment
lasted approximately 40 minutes for each
participant.

RESULTS

We report the results in three aspects. First,
we collected the pattern-response confusion
matrices. Second, we calculated the overall
performance of pattern identification. And third,
we discussed the perception strategies that
participants used to identify patterns.

Confusion Matrices

The pattern-response normalized confusion
matrices of pattern groups with 2—6 patterns are
shown in Table 4.

From the confusion matrices, we can find that
the misidentified patterns were generally
confused with their nearby patterns, and they
usually had a lower level of perceived
roughness. For example, for the pattern group
with 4 patterns, the third pattern P3 was in
most cases misidentified as the second pattern
with the highest misidentification rate of 20%.
Similarly, the fourth pattern (P4) in the pat-
tern group with 5 patterns was misidentified

as the third pattern with the highest rate of
22%. And for the pattern group with 6 pat-
terns, the fourth pattern (P4) was misidentified
as the third pattern (P3) with the highest rate
of 37%.

The above results indicate that identification
performance depends on grating pattern and the
amount of patterns. Hence, we further analyzed
the effects of grating patterns on identification
performance. The Shapiro—Wilk test showed
that accuracy (AC) and reaction time (RT) data
were not all normally distributed and the
Friedman test was used to analyze the results of
each pattern group. The statistical results in-
dicated that 3-6 patterns showed significant
main effect on both AC and RT (3 patterns: H(2)
=8.4,p<0.02and H(2)=12.67,p <0.01 for AC
and RT, respectively; 4 patterns: H(3)=8.33,p <
0.04 and H(3) =11.29, p <0.01 for AC and RT,
respectively; 5 patterns: H(4) = 17.1, p < 0.01
and H(4) = 16.67, p < 0.01 for AC and RT,
respectively; 6 patterns: H(5) = 13.89, p < 0.02
and H(5) = 18.28, p < 0.01 for AC and RT,
respectively). Whereas, the pattern group with 2
patterns showed no significant main effect on
both AC and RT (H(1) =null.,, p =n.s. and H(1)
=0.13, p = 0.25 for AC and RT, respectively).

Post hoc analysis with Wilcoxon signed-rank
test showed that low performance of AC and
RT regularly occurred at patterns with low
perceived roughness as shown in Table 5. For
example, for the pattern group with 3 patterns,
the lowest AC and longest RT occurred in P3
(0.13, 5.5) having the perceived roughness of
0.019. AC of P3 was significantly different
from the other two patterns (all p < 0.05),
whereas RT was significantly different from the
P1 (p < 0.05). For the pattern group with 4
patterns, the lowest AC and longest RT oc-
curred in P3 (1.0, 2.0) with the perceived
roughness of 0.339. AC and RT of P3 were
significantly different from P1 and P4 (all p <
0.05). For the pattern group with 5 patterns, AC
and RT of P1 were significantly different from
other patterns (all p < 0.05). Similarly, the
pattern group with 6 patterns, P4 (0.38, 2.0)
with the perceived roughness 0f 0.408 led to the
lowest AC and longest RT. This pattern was
significantly different from P1 in AC and RT
(all p < 0.05).
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Identification Performance

We analyze the effects of pattern groups on
identification performance in terms of accuracy,
reaction time and finger velocity.

Identification accuracy. Accuracy data on the
pattern group were normally distributed; thus,
a repeated measure of ANOVA test was used to
analyze the data. Results showed that there was
a significant main effect on identification ac-
curacy (Fy, 44 = 65.54, p < 0.01). Generally,
identification accuracy decreased as pattern
group size increased as shown in Figure 5a. The
mean accuracy rates were 100%, 96.67%, 90%,
82.33%, and 69.72% for pattern groups with 2,
3,4, 5, and 6 patterns respectively. Post hoc with
Bonferroni analysis showed that there were
significant differences between pattern groups
with 2 patterns and with 4-6 patterns (all p <
0.05). There was no significant difference be-
tween pattern groups with 2 patterns and 3
patterns (p = 0.261), and between 3 patterns and
4 patterns (p = 0.295). Pattern group with 6
patterns resulted in the lowest accuracy than
other pattern groups (all p < 0.05).

Reaction time. Reaction time data on the
pattern group were normally distributed; thus,
a repeated measure of ANOVA test was used to
analyze the data. Results showed that there was
a significant main effect on reaction time for the
pattern group (Fy, 44 = 65.54, p < 0.05). As
illustrated in Figure 5b, the reaction time gen-
erally increased as pattern group sizes increased.
The mean reaction times were 1.07 s, 2.01 s,

*®
—_—
U SE—

2.23s,2.42 s, and 2.86 s for pattern groups with
2,3,4,5, and 6, respectively. Post hoc analysis
showed that participants needed significantly
shorter times to identify a pattern group with 2
patterns than 3-6 patterns (all p < 0.05).
However, there were no significant differences
between each two pattern groups with 3, 4, 5,
and 6 patterns (all p > 0.05).

Finger velocity. The Shapiro-Wilk test
showed that velocity data were not all normally
distributed and the Friedman test was used to an-
alyze the results of each pattern group. There was
no significant main effect for pattern group (H(4) =
2.4, p = 0.663). As shown in Figure 5c, the mean
velocities were 44.5 mm/s, 44.1 mm/s, 48.6 mm/s,
52.1 mm/s, and 49.1 mm/s for pattern group size of
2, 3,4, 5, and 6 patterns respectively.

Identification Strategies

To better understand how participants per-
formed pattern identification, we collected partic-
ipants’ feedback after the experiment. There were
mainly three strategies summarized as follows.

Perceived roughness strategy. Participants
experienced a specific grating pattern and esti-
mate its magnitude, then identified it from
a group of patterns. This strategy was used by all
the twelve participants for pattern groups with
2-6 patterns, and was particularly effective for
pattern groups with 3 or fewer patterns, as
shown in Figure 6. In general, when pattern
group with 3 or fewer patterns all participants
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Figure 5. Performance of pattern identification on pattern group with 2—6 patterns in (a) identification

accuracy, (b) reaction times, and (c) finger velocity. Error bars represent 0.95 confidence interval.

(*: p <0.05).
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found it easy to identify the patterns. Participants
could move their fingers from left to right once
on the screen to experience a pattern for iden-
tification. The velocity of finger movement was
approximately 41.9 mm/s. For pattern groups
with 4—6 patterns, it was difficult for participants
to just rely on perceived roughness to identify
patterns with close perceived roughness. Only
one participant reported that he just used per-
ceived roughness to identify pattern groups with
2—-6 patterns. He stated that identification be-
came extremely difficult for a pattern group with
6 patterns and resulted in a low AC (57%)).
Object association strategy. With this strat-
egy, participants linked grating patterns to
specific physical objects. For example, a large
number of participants (91.7%) said that the
(0.13, 0.13) pattern had a high perceived
roughness and liked to associate it with the
sensation of sandpapers, which could help them
to quickly identify it from the other patterns.
33.3% of the participants linked the (0.25, 0.25)
pattern to nail files as it gave them a strong level
of roughness with dense bumpy sensation. Both
(0.25, 0.5) and (0.25, 1.0) patterns were mapped
to plastic combs as they provided the sensation
of sliding one’s finger on a dense comb (stated
by 33.3% of the participants). The perceived

—+—Perceived roughness

—+—Object association

roughness for (0.5, 1.5) and (0.5, 1.0) patterns
were similar to smooth cotton (commented by
25% of the participants). One participant asso-
ciated the (0.5, 1.0) pattern with a dense wheel
spoke. 33.3% of the participants said they
connected grating patterns to graphics patterns
for identification. These object mappings en-
hanced the experience of touching specific
patterns and helped participants increasing
identification accuracy. 66.7%, 91.7%, and
91.7% of the participants used this strategy in
identifying pattern groups with 4, 5, and 6
patterns respectively. All the participants said
that identification became difficult for pattern
groups with 5 or more patterns, particularly for
the patterns with middle perceived roughness in
the pattern group. To memorize those patterns,
they must use multiple strategies to supplement
the perceived roughness strategy. Also, partic-
ipants needed to slide fingers left and right re-
peatedly on the screen to experience patterns
multiple times to achieve correct identification.
The velocity of finger motion was relatively high
with a mean value of 50.1 mm/s.

Sensation comfort strategy. Participants grou-
ped patterns into two clusters according to the
level of comfort: pleasant and unpleasant ones.
They then examined the patterns in each cluster

o—Sensation comfort

2 patterns

100.0%
5.0%

50.0%
6 patterns

25.0%

0.0% =,

3 patterns

S patterns

4 patterns

Figure 6. Percentage of identification strategies in pattern group with 2—6 patterns.
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using the magnitude of perceived roughness or
object association strategies. For example, they
regarded (0.13, 2.0) and (2.0, 2.0) patterns as
comfort patterns and assigned pleasant emotions
to them, and regarded (0.13, 0.13) and (0.25,
0.25) as uncomfortable patterns and consider
them as unpleasant emotions. 41.7%, 58.3%,
and 58.3% of the participants used this strategy
in identifying pattern groups with 4—6 patterns,
respectively. It is worth noting that participants
who used this strategy had used object associ-
ation strategy as well. This sensation comfort
strategy was in line with (Verrillo et al., 1999)
suggesting that the pleasantness of the sensation
decreased as perceived roughness increased.

Subjective feedback collected from the par-
ticipants enabled us to understand better the se-
quence of strategies during the task. 41.7% of the
participants had used the three identification
strategies, and they had used the same sequence of
the strategies. To identify grating patterns, they
generally adopted the following three strategies in
order. First, they usually used the method of object
association, because it enabled the participants to
do the task with the highest confidence. With this
method, the participants could link grating patterns
to real-world textures, so as to help memorize the
patterns fast and identify them with high accuracy.
If the object association method did not work, the
participants then would use the sensation comfort
strategy. This strategy could help participants
classify patterns into smaller-size groups. If par-
ticipants tried out the above two strategies without
any results, they would use the strategy of per-
ceived roughness to identify patterns. As partic-
ipants used these strategies in sequence and
stopped identification if they thought they suc-
ceeded, it is unlikely for them to have different
results in an identification task.

DISCUSSION

In this section, we discuss the experimental
results according to the two questions at the
beginning of the experiment.

The first question was focused on the max-
imum number of patterns that participants could
identify with high accuracy and short time. The
experimental results showed that pattern
groups with no more than 4 patterns could

support pattern identification performance
with high accuracy and short reaction time.
Pattern group with 4 patterns (90%) had
similar identification accuracy as pattern
group with 3 patterns (96.67%), but signifi-
cantly higher identification accuracy than
pattern group with more than 4 patterns
(82.3% for 5 patterns and 69.7% for 6 pat-
terns). The identification accuracy for 5 pat-
terns is similar to that revealed in the previous
study (Rekik et al., 2017) (80.2%). In addition,
the analysis of reaction time showed no sig-
nificant difference between pattern groups
with 3 patterns (2.01 s) and 4 patterns (2.23 s).
Therefore, it should be reasonable to conclude
that pattern group with 4 patterns is the
maximum number that could support pattern
identification performance with high accuracy
and short reaction time.

We were also interested in the question of
how would participants behave when identifying
patterns in pattern groups with different pattern
numbers. We found that participants generally
depended on perceived roughness, object asso-
ciation, and sensation comfort strategies to iden-
tify patterns. The choice of identification strategies
is subject to the number of patterns in the pattern
group. For example, for pattern groups with 3 or
fewer patterns, participants could use the perceived
roughness strategy to identify patterns with ease.
When pattern group with 4 or more patterns,
participants additionally used object association
and sensation comfort strategies to identify pat-
terns. Rekik et al. have reported strategies for
identifying tactile textures over a friction surface
(Rekik et al., 2017), and our study further obtained
new evidence on human behaviors in pattern
identification in varying pattern groups.

GENERAL DISCUSSION

The experimental results have uncovered
many notions regarding the effects of tactile
grating patterns on perceived roughness for
friction surface interaction design.

Understanding the Perceived Roughness

A significant finding of our study is no sta-
tistical differences between high and low-
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friction zones in perceived roughness. This may
be due to the fact that the frequency of multiple
edges (i.e., periodic gratings that are composed
by low-friction and high-friction zones) is the
main factor affecting perceived roughness. The
edges are produced by two types of consecutive
step changes in friction: a step fall in friction
(FF) followed by a step rise in friction (RF) or in
the reverse order. The periodic gratings with
these two types of step changes could contribute
quite similar effects to perceived roughness.
This explains why low- and high-friction zones
resulted in similar perceived roughness. Such
a result is in line with Saleem et al. (Saleem
et al., 2020), which showed that period gratings
displayed by consecutive sequences of FF fol-
lowed by RF were perceived with the same
acuity as compared to vice versa.

We compared the results of our study and
Vardar et al. (Vardar et al., 2017) to gain insights
into the effects of haptic devices on perceived
roughness. While the haptic devices used in our
study and Vardar et al’s. (2017) are different
(ultrasonic vs. electrostatic), the perceived
roughness in both studies exhibited inverted U-
shape trends with varying widths of low-friction
and high-friction zones. This may be because the
perceived roughness over virtual gratings de-
pends on gratings’ edges (Saleem et al., 2020)
and the two device types could generate similar
gratings’ edges (E. Vezzoli et al., 2015).

However, the peak points in the inverted U-
shape curves of perceived roughness in the two
studies were different. This is may be due to the
differences between the friction modulation
techniques of the two haptic devices—ultrasonic
haptic devices work by reducing friction, but
electrostatic devices work by increasing friction.
As aresult, the two haptic devices would vary in
the sharpness of virtual gratings’ edges, leading
to different peak points in the two studies. Other
environmental factors such as finger moisture and
contact temperature, the number of participants,
and subject-to-subject variability such as the
variability in fingerprints and finger electrome-
chanical properties may also affect the results
(Delhaye et al., 2014; Derler & Gerhardt, 2012;
Derler et al., 2009; Pasumarty et al., 2011).

Our results indicated that perceived rough-
ness generally declined linearly along with the

increase of the width of the friction zone when
LW or HW was set as a constant value of
0.38 mm or lower. When either LW or HW was
set as a constant greater than 0.5 mm but less
than 2.0 mm, the perceived roughness followed
an inverted U-shape trend. The results differ
from the studies on real textures, which showed
that perceived roughness increased along with
groove width increased (Hollins & Risner, 2000;
Lawrence et al., 2007; Lederman, 1974). These
differences may attribute to different texture
generation mechanisms. Physical textures are
generated by moving the finger over physical
ridges and grooves on friction surfaces, but for
virtual textures, perceived roughness is gener-
ated by widths of low- and high-friction zones.

Optimal Pattern Group Size

Existing studies have investigated pattern
identification performance on friction surfaces
(Potier et al., 2016; Rantala et al., 2009; Rekik
et al., 2017). However, it is still unclear of the
maximum pattern group size that participants
could achieve high performance. Understanding
the performance of tactile pattern identification
is crucial in application design because different
sizes of group patterns may lead to different
identification performances. Accordingly, we
proposed a method to form grating pattern
groups with a number of patterns that are most
distinctive from each other in terms of perceived
roughness. In Experiment 2, we used this pattern
selection method to determine five pattern
groups and evaluated user performance of
identifying the patterns in each group. From the
results, we learned that the identification accu-
racy was greater than 90% when group sizes
were 4 or less. Participants could identify the
pattern group with 5 patterns in 82.3%. This
result is comparable with (Rekik et al., 2017)
which showed an accuracy of 80.2% when
participants identifying 5 patterns. Participants
could identify up to 6 patterns with an accuracy
above 69.7%. This accuracy is better than (Saket
et al., 2013) because it had an accuracy of 57%
when participants identifying 6 patterns. These
results explicitly determine the optimal pattern
group size that supports optimal identification
performance.
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Design Implications

Our findings not only enrich the un-
derstanding of the perception of virtual textures
on ultrasonic friction surfaces but also provide
implications and recommendations for tactile
interface design and applications.

1) Designing discriminable grating patterns should
consider spatial period, and different width
combinations of low- and high-friction zones.
In general, denser patterns with lower widths of
low- and high-friction zones provide higher
perceived roughness than coarser ones. For
example, patterns such as (0.25, 0.5) and (0.25,
1.0) could convey distinct sensations than those
patterns with higher low- and high-friction
zones such as (0.38, 2.0) and (1.0, 2.0). In
addition, designers should avoid using (LW,
HW) = (a, b) and (LW, HW) = (b, a) patterns as
both could lead to a similar perceived
roughness.

2) To form a group of patterns, our proposed method
can be used to specify patterns with the most
distinctive perceived roughness from each other.
Our method can replace or complement other
pattern selection methods such as the one using
density (Klatzky et al., 2019).

3) Designers should suggest multiple perceptual
strategies, such as perceived roughness, real object
mapping and emotions, when an application requires
users to identify a group of more than 4 patterns.

Applications of Interaction Design

Our results can support designing new
tactile applications. One example is designing
a target-approaching indicator on a tactile
touchscreen. The linear trend of perceived
roughness obtained in Experiment 1 could
provide a smooth transition to the sliding
finger, thus can be used to indicate the dis-
tance between the finger and the target. An-
other example is using a group of grating
patterns to encode tactile alphabets. Experi-
ment 2 proved that participants could identify
a group of 4 grating patterns with high per-
formance. Thus, designers could use 4 tactile
patterns as code elements to efficiently encode
tactile alphabets.

LIMITATIONS AND FUTURE WORK

Our work has several limitations. First, we
measured texture perception in terms of per-
ceived roughness of grating patterns and assessed
identification performance on grating patterns.
Future studies may consider other measurements
(e.g., emotion state) to investigate the effects of
tactile perception, and identification performance
may vary by using multiple texture design
strategies. Second, we aimed to investigate the
fundamental factors of grating patterns and set
static low- and high-friction widths in a specific
grating pattern. This leaves room for future work
to investigate dynamic rendering of grating pat-
terns that the spatial period changes with finger
velocity as presented in (Vezzoli et al., 2016).
Third, our experiments were conducted on an
ultrasonic frictional surface and future studies
should further investigate user performance with
other virtual texture actuation techniques such as
electrostatic. Finally, we set the mean finger
velocity as 50 mm/s by using an indicative
moving cursor. This method might not provide
high precise of finger velocity control. Future
work should consider using high precise appa-
ratus to control finger exploring speed.

CONCLUSIONS

In this study, we carried out two experiments
to look into the effects of low- and high-friction
zones on grating pattern design and also the
human capability of identifying surface rough-
ness. The main findings are below:

e Results of Experiment 1 show that perceived
roughness was generally decreased along with the
increase of either LW or HW. Trend analysis
showed a strong linear effect when LW or HW was
set as constant values of 0.38 mm or lower.
Perceived roughness followed an inverted U-
shape trend when the constant factor of either
LW or HW was larger than 0.5 mm but less than
2.0 mm. The statistical analysis showed that the
low- and high-friction zones had similar effects on
human perception of roughness. According to the
results, we proposed a pattern selection method to
find patterns with the most distinctive perceived
roughness from each other.
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e Results of Experiment 2 indicate that participants
could efficiently identify a pattern group with 4
patterns. They relied on perceived roughness,
object association, and sensation comfort meth-
ods to identify grating patterns. Such empirical
evidence provides necessary support for designing
tactile interfaces such as tactile codes.

These findings help us obtain a comprehensive
understanding of friction-based patterns and
could provide implications for the design of ef-
ficient tactile applications over friction surfaces.

KEY POINTS

® Perceived roughness was generally decreased
along with the increase of either LW or HW and
followed linear or inverted U-shape trends.

e Participants could identify 4 or fewer grating
patterns with high accuracy (>90%) and short
reaction time (<2.2 s).

e Participants relied on perceived roughness, object
association and sensation comfort methods to
identify grating patterns.
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